Assouad Dimension of Self-affine Carpets
نویسنده
چکیده
We calculate the Assouad dimension of the self-affine carpets of Bedford and McMullen, and of Lalley and Gatzouras. We also calculate the conformal Assouad dimension of those carpets that are not self-similar.
منابع مشابه
Assouad Type Spectra for Some Fractal Families
In a previous paper we introduced a new ‘dimension spectrum’, motivated by the Assouad dimension, designed to give precise information about the scaling structure and homogeneity of a metric space. In this paper we compute the spectrum explicitly for a range of well-studied fractal sets, including: the self-affine carpets of Bedford and McMullen, self-similar and self-conformal sets with overla...
متن کاملThe Hausdorff Dimension of the Projections of Self-affine Carpets
We study the orthogonal projections of a large class of self-affine carpets, which contains the carpets of Bedford and McMullen as special cases. Our main result is that if Λ is such a carpet, and certain natural irrationality conditions hold, then every orthogonal projection of Λ in a non-principal direction has Hausdorff dimension min(γ, 1), where γ is the Hausdorff dimension of Λ. This gener...
متن کاملMultifractal Analysis of Birkhoff Averages on ”self-affine” Symbolic Spaces
We achieve on self-affine Sierpinski carpets the multifractal analysis of the Birkhoff averages of potentials satisfying a Dini condition. Given such a potential, the corresponding Hausdorff spectrum cannot be deduced from that of the associated Gibbs measure by a simple transformation. Indeed, these spectra are respectively obtained as the Legendre transform of two distinct concave differentia...
متن کاملOn the Assouad dimension of self-similar sets with overlaps
It is known that, unlike the Hausdorff dimension, the Assouad dimension of a self-similar set can exceed the similarity dimension if there are overlaps in the construction. Our main result is the following precise dichotomy for self-similar sets in the line: either the weak separation property is satisfied, in which case the Hausdorff and Assouad dimensions coincide; or the weak separation prop...
متن کاملEqui-homogeneity, Assouad Dimension and Non-autonomous Dynamics
A fractal, as originally described by Mandelbrot, is a set with an irregular and fragmented shape. Many fractals that have been extensively studied, such as self-similar sets, have the same degree of irregularity and fragmentation at all length scales. In contrast to this, an equi-homogeneous set is an irregular and fragmented shape that at each fixed scale is identical at every point. We show ...
متن کامل